Welcome to CitePrep Guides
Every web page on this CitePrep Guides comes with a context-sensitive help page. Simply click on the circle question mark located at the top right section of every page.
+
-
Click on
+
to expand a section.
Click on
-
to collapse a section.
Click on to collaps all lines on a page.
Click on to expand all lines on a page.
HELP
Click on the HELP icon to launch this help page.
CLEVELAND
Click on the PROFILE icon to check your current status.
GAMES
Click on the GAME icon to launch the panel on games
CARDS
Click on the CARDS icon to launch the panel on flashcards
TERMS
Click on the TERMS icon to launch the panel on key terms.
MENU
Click on the MENU icon to launch the panel on menus.
DAY
NIGHT
24
Reference
Scroll down to your desired entry,
noted in reverse colors.
Hand
Fish
Fish
Relax
A familiar exercise for anyone suffering from anxiety is to envision themselves in a safe place away from the triggers that induce their condition. These animations are meant to be a substitute for such visualizations.
Watching a fish in an aquarium or the five-finger breathing exercise is meant to help with anxiety. My goal here is to create a suite of animations that mitigate symptoms of anxiety. Future animations include fireflies flowing at night, waves on a seashore, a night sky, and random birds frequenting a barren tree.
Index
Temporary
Notes
General
Taylor polynomials
  • What are Taylor Polynomials
  • Why are Taylor Polynomials important
  • What is the history of Taylor Polynomials
  • How do you build a Taylor Polynomial
  • How do the graphs of Taylor Polynomials appear
  • Build a Taylor Polynomial for EACH function listed in Table I below
  • What is error bound for a Taylor Polynomial
  • Calculate the error bound for a Taylor Polynomial
Infinite sequences
  • What is a sequence
  • What is an infinite sequence
  • What are some famous sequences
  • Arithmetic Sequence
  • Geometric Sequence
  • What is a Series
  • Limit of a sequence
Limit of a sequence
  • Show convergence of a sequence as a continuous function
  • Show convergence by definition
  • Show convergence using the squeeze theorem
  • Show convergence for a geometric sequence
  • Show convergence by L'Hopital's Rule
  • Show convergence for alternating sequences
  • Show convergence by the Absolute Value Theorem
  • Finding the Nth Term of a sequence
  • Determine whether a sequence is monotonic
  • Determine whether a sequence is bounded
  • Apply limit laws for sequences
Power series
  • Review a Taylor Polynomial
  • What is a Power Series
  • What is the history of a Power Series?
  • How do you form a Power Series
  • The Geometric Series as a Power Series
  • Does a Power Series converge?
Infinite series
  • What is an infinite series?
  • When is an infinite series convergent?
  • When is an infinite series divergent?
  • What is a telescoping series?
  • When is a geometric series convergent?
  • Using the properties of an infinite series
Testing for convergence
  • Nth-Term Test for divergence
  • Integral Test for convergence
  • P-Series Test for convergence
  • Direct Comparison Test for convergence
  • Limit Comparison Test for convergence
  • Alternating Series Test for convergence
  • Alternating Series Remainder
  • Testing for absolute and conditional convergence
  • Ratio Test for convergence
  • Root Test for convergence
  • Strategies for testing convergence
Maclaurin Series
  • What is a Maclaurin Series (MS)?
  • What is the MS for the exponential function?
  • What is the MS for the sine function?
  • What is the MS for the cosine function?
  • What is the MS for the arctangent function?
  • What is the MS for the natural log function?
  • Synthesize new MSs using integration
  • Synthesize new MSs using derivatives
  • Synthesize new MSs using multiplication
  • Synthesize new MSs using substitution
  • Given any MS, find its radius of conversion
Taylor Series
  • What is a Taylor Series (TS)?
  • What is the TS for the exponential function at a=1?
  • What is the TS for the sine function at a=1?
  • What is the TS for the cosine function at a=1?
  • What is the TS for the arctangent function at a=1?
  • What is the TS for the natural log function at a=1?
  • Synthesize new TSs using integration at a=1
  • Synthesize new TSs using derivatives at a=1
  • Synthesize new TSs using multiplication at a=1
  • Synthesize new TSs using substitution at a=1
  • Given any TS, find its radius of conversion at a=1
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Settings

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Colors
Choose your PRIMARY color
Choose your SECONDARY color
Choose your college
Games

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Quizzes

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Faucibus et molestie ac feugiat sed lectus vestibulum. Maecenas ultricies mi eget mauris pharetra et ultrices neque ornare. Id aliquet lectus proin nibh. Sollicitudin tempor id eu nisl. Mus mauris vitae ultricies leo integer malesuada nunc. Et netus et malesuada fames ac turpis egestas. Ultricies tristique nulla aliquet enim tortor at auctor. Egestas congue quisque egestas diam in. Bibendum est ultricies integer quis auctor. Ut ornare lectus sit amet est placerat in egestas. Pellentesque nec nam aliquam sem. Nunc mattis enim ut tellus elementum sagittis. Phasellus egestas tellus rutrum tellus pellentesque eu tincidunt tortor.

Memory
Glossary ZZ
Wait for it
Theorems
Definitions
Vocabulary
History
1000's
1100's
1200's
1300's
1400's
1500's
1600's
1700's
1800's
1900's
2000's
2100's
Introduction of ZERO
1170-1180
Bubonic Plague
1665-1666
Napoleonic Wars
1803-1815
Leonardo Bigollo Pisano
80 years
1170-1250
John Napier
67 years
1550-1617
René Descartes
54 years
1596-1650
Isaac Newton
84 years
1643-1727
Colin Maclaurin
48 years
1698-1746
Leonhard Euler
76 years
1707-1783
Carl Friedrich Gauss
78 years
1777-1855
Augustin-Louis Cauchy
68 years
1789-1857
Ada Lovelace
37 years
1815-1852
Bernhard Riemann
40 years
1826-1866
Maryam Mirzakhani
40 years
1977-2017
Click on an Event or Name
Flashcards
When ana_n is a quotient of two functions

111800:front
Given
Find

CitePrep Guides

CitePrep Guides

CitePrep Guides

CitePrep Guides

Problem No. 2

HOW
Problem No. 2
Problem No. 2
HOW
Welcome to the HOW-TO video for Problem No. 2 by Cite PREP GUIDES for Math.
limn n3en/2\LARGE \limn \ \frac{n^3}{e^{n/2}}
limn n3en/2\LARGE \limn \ \frac{n^3}{e^{n/2}}
an=n3en/2\LARGE \begin{gather*} a_n = \frac{n^3}{e^{n/2}} \end{gather*}
Given an=n3en/2 ,find limnan .\LARGE \begin{gather*} \textsf{Given } a_n = \frac{n^3}{e^{n/2}} \ ,\\[1em] \textsf{find } \limn a_n \ . \end{gather*}

In this extended video, I consider three questions motivated by the How-To video for problem 2.

Extended How

Problem No. 2

Problem No. 2

Problem No. 2

  • Why is switching to a continuous function important?
  • Why does a quotient form imply L'Hopital's Rule?
  • Why do we repeat L'Hopital's Rule more than once?

Problem No. 2

Problem No. 2 involves finding the limit of the nth\nth term of a sequence when that term is a quotient of two functions.

Let's get started.

Problem No. 2

When ana_n is a quotient

of two functions

Let's get started.

Solution

AAA For this problem, I see that ana_n is a quotient equal to a continuous function f(x)f(x) for all positive n,n,

Quotient

from  an=n3en/2,we have  an=f(n),f(x)=x3ex/2,   n>0 .\LARGE \begin{gather*} \textrm{from} \ \ a_n=\frac{n^3}{e^{n/2}}, \\[2em] \textrm{we have} \ \ a_n = f(n), \\[1em] f(x) = \frac{x^3}{e^{x/2}} , \ \ \ n \gt 0 \ . \end{gather*}
Why is this observation important?
111800:front
Given
Find
an=n3en/2f(x)=x3ex/2\LARGE \begin{gather*} a_n = \frac{n^3}{e^{n/2}} \\ f(x) = \frac{x^3}{e^{x/2}} \\ \end{gather*}
Quotient
an=f(n),f(x)=x3ex/2,   n>0 .\LARGE \begin{gather*} a_n = f(n), \\[1em] f(x) = \frac{x^3}{e^{x/2}} , \ \ \ n \gt 0 \ . \end{gather*}
Quotient
an=f(n),f(x)=x3ex/2,   n>0 .\LARGE \begin{gather*} a_n = f(n), \\[1em] f(x) = \frac{x^3}{e^{x/2}} , \ \ \ n \gt 0 \ . \end{gather*}

When I say that ana_n is a quotient equal to a continuous function f(x)f(x) for all positive n,n, the question is why is my observation important and how does that observation help us solve the problem.

Thought cloud - Orange
Why?
Thinking face - Orange

The answer to that question is simple. If we can transform the nth\nth term of a sequence from a discrete function of nn to a continuous function of x,x,

n3en/2    x3ex/2 ,\LARGE \frac{n^3}{e^{n/2}} \ \ \ \Rightarrow \ \frac{x^3}{e^{x/2}} \ ,

then we can transform our limit problem to the limit of a continuous function,

limn n3en/2      limx x3ex/2 .\Large \limn \ \frac{n^3}{e^{n/2}} \ \ \ \Rightarrow \ \ \ \limx \ \frac{x^3}{e^{x/2}} \ .

Now, we can use additional methods to find the limit of the nth\nth term that are otherwise not available, including

  • The Squeeze Theorem,
  • L'Hopital's Rule,
  • The limit of a composite function,
  • Direct substitution,
  • Definition of infinite limits,
  • Limit laws for continuous functions, and
  • The limits of trigonometric functions.

Back to
Problem 2

Moving on

with Problem 2

And because ana_n is a quotient, I suspect I will find the limit of a sequence using L'Hopital's Rule,

L'Hopital's Rule
Iflimxa f(x)g(x)= ,thenlimxa f(x)g(x) = limxa f(x)g(x) .\Large \begin{array}{l l} \textrm{If} \\ & \lima \ \frac {f(x)}{g(x)} = \frac \infty\infty\ , \\[2em] \textrm{then} \\ & \lima \ \frac {f(x)}{g(x)} \ = \ \lima \ \frac {f'(x)}{g'(x)} \ . \end{array}
Why does a quotient imply L'Hopital's Rule?

When a limit problem involves a quotient of two functions, discrete or continuous, I anticipate finding the limit may involve using L'Hopital's Rule.

The question is why can I draw this conclusion about using L'Hopital's Rule simply from a quotient in the problem.

The answer to this question is simple. If a limit problem involves a quotient, I immediately think of L'Hopital's Rule because the definition of the rule begins with an indeterminant form of a quotient.

Thought cloud - Orange
Why?
Thinking face - Orange

Recall that L'Hopital's Rule says that if the limit of a quotient by direct subsitution yields an indeterminant form,

Indeterminant form
limxa f(x)g(x) =  ,\LARGE \begin{gather*} \lima \ \frac {f(x)}{g(x)} \ = \ \frac \infty\infty \ , \end{gather*}
L'Hopital's Rule
Iflimxa f(x)g(x)= ,thenlimxa f(x)g(x) = limxa f(x)g(x) .\Large \begin{array}{l l} \textrm{If} \\ & \lima \ \frac {f(x)}{g(x)} = \frac \infty\infty\ , \\[2em] \textrm{then} \\ & \lima \ \frac {f(x)}{g(x)} \ = \ \lima \ \frac {f'(x)}{g'(x)} \ . \end{array}

then by L'Hopital's Rule you can take the derivative of the numerator and denominator individually, and then re-evaluate your limit by direct subsitution,

Take derivatives
limxa f(x)g(x) = L.\LARGE \lima \ \frac {f'(x)}{g'(x)} \ = \ L.

L'Hopital's Rule applies to other indeterminant forms aside from the quotient form above, including when

Other indeterminant forms
limxa f(x)g(x) = ±±,limxa f(x)g(x) = 00, and limxa f(x)g(x) = 0 .\LARGE \begin{gather*} \lima \ \frac {f(x)}{g(x)} \ = \ \frac {\pm \infty}{\pm \infty}, \\[2em] \lima \ \frac {f(x)}{g(x)} \ = \ \frac 00, \textrm{ and }\\[2em] \lima \ f(x) \cdot g(x) \ = \ 0 \cdot \infty\ . \end{gather*}

Steps to a Solution Z

Let f(x)f(x) be a continuous function so that ana_n equals f(x)f(x) for all positive values of n.n.

1. Let f(x)f(x) be a continuous function.
f(x)=x3ex/2,an=f(x),  n>0.\LARGE \begin{gather*} \LARGE f(x) = \frac {x^3}{e^{x/2}},\\[1em] a_n = f(x), \ \ n \gt 0. \end{gather*}

Apply L'Hopital's Rule as needed until the limit found is not indeterminant,
limxf(x),limxf(x)00, or limxf(x)0.\Large \begin{gather*} \limx f(x) \ne \frac \infty\infty, \\[1em] \limx f(x) \ne \frac 00, \textrm{ or } \\[1em] \limx f(x) \ne 0 \cdot \infty. \end{gather*}
Why do we repeat L'Hopital's Rule?
Thought cloud - Orange
Why?
Thinking face - Orange

For this problem, I say that we need to apply L'Hopital's Rule several times until we reach our answer. The question is why do we need to repeat L'Hopital's Rule several times for one problem, but not for others.

The answer to that question depends on the problem. Unfortunately, each time we apply L'Hopital's Rule, we end up with an indeterminant form, until we don't.

limxx3ex/2 =  ,limxddx (x3)ddx (ex/2) =  ,limxd2dx2 (x3)d2dx2 (ex/2) =  ,limxd3dx3 (x3)d3dx3 (ex/2) = 6 = 0 .\LARGE \begin{gather*} \limx \frac{x^3}{e^{x/2}} \ = \ \frac \infty\infty \ ,\\[2em] \limx \frac{\ddx \ (x^3)}{\ddx \ (e^{x/2})} \ = \ \frac \infty\infty \ ,\\[2em] \limx \frac{\ddxb \ (x^3)}{\ddxb \ (e^{x/2})} \ = \ \frac \infty\infty \ ,\\[2em] \limx \frac{\ddxc \ (x^3)}{\ddxc \ (e^{x/2})} \ = \ \frac 6\infty \ = \ 0\ .\\[1em] \end{gather*}

For our problem, taking successive derivatives of the numerator reduces the degree of the numerator by one each time we take a derivative,

Numerator
Successive derivatives
x3  3x2  6x  6.\LARGE x^3 \ \Rightarrow \ 3x^2 \ \Rightarrow \ 6x \ \Rightarrow \ 6.

On the other hand, taking successive derivatives of the denominator changes the leading constant only,

Denominator
Successive derivatives
ekx k1ekx k2ekx k3ekx  ,k=1/2.\LARGE \begin{gather*} e^{kx} \ \Rightarrow k^1e^{kx} \ \Rightarrow k^2e^{kx} \ \Rightarrow k^3e^{kx} \ \Rightarrow \tripledot \ , \\[1em] k= 1/2. \end{gather*}

Going forward, try to visualize successive applications of the derivative when applying L'Hopital's Rule for similar problems,

Visualize
successive derivatives
x3ekx  3x2kekx  6xk2ekx  6k3ekx ,where limx 6k3ekx=0, k=1/2.\LARGE \begin{gather*} \frac{x^3}{e^{kx}} \ \Rightarrow \ \frac{3x^2}{ke^{kx}} \ \Rightarrow \ \frac{6x}{k^2e^{kx}} \ \Rightarrow \ \frac{6}{k^3e^{kx}} \ ,\\[1em] \textrm{where } \limx \ \frac{6}{k^3e^{kx}} = 0 , \ k=1/2. \end{gather*}

We begin by finding the limit of f(x)f(x) by direct substitution.

Begin by direct substitutionlimxx3ex/2\Large \begin{gathered} \textrm{Begin by direct substitution} \\[0.5em] \begin{aligned} \limx \frac {x^3}{e^{x/2}} \end{aligned}\\[3em] \end{gathered}

As noted here, we find our result is an indeterminant form.

Begin by direct substitutionlimxx3ex/2= \Large \begin{gathered} \textrm{Begin by direct substitution} \\[0.5em] \begin{aligned} \limx \frac {x^3}{e^{x/2}} =\ \frac \infty\infty \end{aligned}\\[3em] \end{gathered}

So now we apply L'Hopital's Rule for the first time.

By L'Hopital's Rule, we know that if by direct substitution the limit of a function f(x)f(x) takes an indeterminant form then the limit of f(x)f(x) equals the limit of a new function defined as the derivative of the numerator divided by the derviative of the denominator.

Apply L’Hopital’s Rule (first time)limxx3ex/2=     limxx3ex/2=limnddx(x3)ddx(ex/2)=limx3x2(1/2)ex/2= \Large \begin{gathered} \textrm{Apply L'Hopital's Rule (first time)}\\[0.5em] \begin{aligned} \color{grey} \limx \frac {x^3}{e^{x/2}} =\ \frac \infty\infty \ \ \Rightarrow \ \ \\[1.5em] \color{black} \limx \frac {x^3}{e^{x/2}} =& \limn \frac{\ddx (x^3)}{\ddx (e^{x/2})}\\[2em] =& \limx \frac {3x^2}{(1/2)e^{x/2}} = \ \frac \infty\infty \end{aligned}\\[2em] \end{gathered}

Unfortunately, the result from applying L'Hopital's Rule the first time is yet another indeterminant form. Therefore, we must apply L'Hopital's Rule a second time.

As before, we apply L'Hopital's Rule by taking the derivative of the numerator and denominator independently, then finding a new limit by direct substitution.

Re-Apply L’Hopital’s Rule (second time)limx3x2(1/2)ex/2=    limx3x2(1/2)ex/2=limnddx(3x2)ddx(1/2)ex/2=limx6x(1/2)2ex/2= \Large \begin{gathered} \textrm{Re-Apply L'Hopital's Rule (second time)} \\[0.5em] \begin{aligned} \color{grey} \limx \frac {3x^2}{(1/2)e^{x/2}} =\frac \infty\infty \ \ \Rightarrow \ \ \\[1.5em] \color{black} \limx \frac {3x^2}{(1/2)e^{x/2}} =& \limn \frac{\ddx (3x^2)}{\ddx (1/2)e^{x/2}}\\[2em] =& \limx \frac {6x}{(1/2)^2e^{x/2}} = \ \frac \infty\infty \end{aligned}\\[2em] \end{gathered}

Unfortunately again, the result of our second application of L'Hopital's Rule is yet another indeterminant form.

Applying L'Hopital's Rule a third time will do the trick. Upon our third application of L'Hopital's Rule our result is a limit of zero.

Re-Apply L’Hopital’s Rule (third time)limx6x(1/2)2ex/2=   limx6x(1/2)2ex/2=limnddx(6x)ddx(1/2)2ex/2=limx6(1/2)3ex/2=0\Large \begin{gathered} \textrm{Re-Apply L'Hopital's Rule (third time)} \\[0.5em] \begin{aligned} \color{grey} \limx \frac {6x}{(1/2)^2e^{x/2}} = \ \frac \infty\infty \ \Rightarrow \ \\[1.5em] \color{black} \limx \frac {6x}{(1/2)^2e^{x/2}} =& \limn \frac{\ddx (6x)}{\ddx (1/2)^2e^{x/2}}\\[2em] =& \limx \frac {6}{(1/2)^3e^{x/2}} = 0 \end{aligned}\\[2em] \end{gathered}
2. Find limxf(x)\limx f(x) by L'Hopital's Rule.
limxf(x)=0\LARGE \limx f(x) = 0

Finally, by the Theorem for the Limit of a Sequence, we can say that the limit of ana_n equals the limit of f(x)f(x) equals zero.

3. Find the Limit of a Sequence limnan.\limn a_n.
limnan= limxf(x)limnan= 0\LARGE \begin{align*} \LARGE \limn a_n =& \ \limx f(x) \\[1em] \limn a_n =& \ 0 \end{align*}
limnan=0\LARGE \begin{gather*} \limn a_n = 0 \end{gather*}